Ammonia Carbonation and Biomass Pyrolysis for Carbon Management James W. Lee,1* Danny Day,2 Robert J. Evans,3 and Rongfu Li,4 ¹Oak Ridge National Laboratory, Oak Ridge, TN 38831 USA ²Aprida, Inc., Atlanta, GA 30339 USA ³National Renewable Energy Laboratory, Golden, CO 80401 USA ⁴Former Jinhuashi Chemical Fertilizer Company, China *Corresponding E-mail: Leejw@ORNL.gov, Tel:574-1208; Fax:574-1275 ### This Technology Could Transform Two Industrial Greenhouse-Gas Emitters into an Environmentally Remedying and Productive System OAK RIDGE NATIONA U. S. DEPARTMENT OF F # Validity of the Proposed Technology Concept Can Be Seen by Comparison between Two Fertilizer Production Reactions The proposed CO₂-solidifying NH₄HCO₃ production process: $$3CH_4 + 4N_2 + 14H_2O + 5CO_2 \rightarrow 8NH_4HCO_3 \downarrow \Delta_rG^\circ = \&5.44 \text{ kJ/mol}$$ The current ammonium nitrate production process emitting CO₂: $$3CH_4 + 4N_2 + 2H_2O + 8O_2 \rightarrow 4NH_4NO_3 + 3CO_2$$ # Chemical Pathways for Simultaneous Removal of Major ${\rm CO_2}$ and ppm Levels of ${\rm NO_x}$ and ${\rm SO_x}$ Emissions by Innovative Application of the Fertilizer Production Reactions ### Fundamental Question to Be Answered by Experiment: Is is feasible to use ammonia-carbonation reaction to remove CO₂ emissions from industrial flue gas? $NH_3 + CO_2 + H_2O \rightarrow NH_4HCO_3$ $\triangle_rG^\circ = \&18.05 \text{ kJ/mol}$ OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY #### **Market Analysis Showed:** #### The Proposed Ammonia-Scrubbing Technology Can Be Profitable (Market Prices from Chemical Marketing Reporter January, 2002) | Product | Market
Price
\$/lb-mol | Market
Price
\$/metric ton | To solidify 3.7 ton of CO_2 (1 ton of carbon), it will: | |--|------------------------------|----------------------------------|---| | NH ₃ fertilizer grade | \$1.23 | \$159 | need \$225 (1.4 ton) of NH ₃ | | NH ₄ NO ₃ fertilizer grade | \$5.25 | \$145 | | | NH ₄ HCO ₃ fertilizer grade | \$2.63 ^a | \$73 ^a | produce \$481 (6.6 ton) of NH ₄ HCO ₃ | | NH ₄ HCO ₃ food grade ^b | \$27.06 | \$755 | | a. Based on a per lb-atom N value of NH₄NO₃. b. Commonly used as a food leavening agent. # Potential Capacity of the Proposed Ammonia-Scrubbing Technology for Removal of Industrial CO₂ Emissions | Year | World annual nitrogen fertilizer consumption* | Possible capacity for CO ₂ solidification | Potential carbon credit | |------|---|--|--| | 1994 | 80 million tons N/year | | | | 2010 | 100 million tons N/year | 315 million tons CO ₂ /year | 18.6% (U.S.) or 4.8% (world) reduction in CO_2 emissions from coal-fired power plants | | 2025 | 120 million tons N/year | 378 million tons CO ₂ /year | 22.3% (U.S.) or 5.76% (world) reduction in CO_2 emissions from coal-fired power plants | Data from: Kawashima, K., K. Okamoto, M. J. Bazin, and J. M. Lynch (1998) "Nitrogen fertilizer and ecotoxicology: Global distribution of environmental pollution caused by food production," Biotechnology Research Series 7:208–219. # A Preliminary Test Reactor System Constructed through a Small Seed Money (\$70K) Project #### Illustration of the Test Reactor System Constructed at Our Lab ### Our Experimental Results: Measurements of CO₂ Removal by Ammonia Carbonation in the Gas Phase ### Our Experimental Results: Solid Product Produced by Ammonia Carbonation in the Gas Phase #### Solid Products (NH₄HCO₃ and NH₂COONH₄) from Ammonia-Carbonation Experiments Were Identified by NMR Analysis ### Conceptual Design to Remove CO₂ Emissions in Industrial Combustion Facilities by Ammonia Carbonation OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY ### Integration of Ammonia Carbonation and Biomass Pyrolysis for Carbon Management ### Potential Application of Ammonia Carbonation for Removal of CO2 from Biomass Pyrolysis to Make Pure H2 ### Intelligent Application of NH₄HCO₃ to Enhance Sequestration of Carbon into Soil/Subsoil Earth Layers #### **Expected Benefits from the Invention**